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Missing Data Mechanisms1

Missing Completely at Random (MCAR):

Conditional on the independent variables in the model, 
neither the observed or unobserved outcomes of the 
dependent variable explain dropout

Missing at Random (MAR):

Conditional on the independent variables in the model, 
the observed outcomes of the dependent variable explain 
dropout, but the unobserved outcomes do not



11/16/2007
File name/location

Company Confidential
Copyright © 2000 Eli Lilly and Company

4

Missing Data Mechanisms1

Missing Completely at Random (MNAR):

Conditional on the independent variables in the model 
and the observed outcomes of the dependent variable, 
the unobserved outcomes of the dependent variable 
explain dropout
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Missing Data Mechanisms2

•The selection of the appropriate missing data mechanism 
depends not only on the data but also the analysis model

•Example:
•

 

Differential dropout by treatment group → missingness in data not random
•

 

Include treatment term in analytical model → dropout MCAR

•Pure MCAR
•

 

Missingness cannot be attributed to anything

•Covariate-dependent MCAR
•

 

Missingness depends on covariates
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Missing Data Mechanisms

•Other terms such as Ignorable Missingness and Informative 
Censoring must also consider the analytical method
•

 

Ignorable missingness is defined as missingness that can be 
ignored because the observed data provides unbiased 
parameter estimates

•

 

What may be ignorable in a likelihood-based analysis may be 
non-ignorable in a frequentist-based analysis
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Missingness in Clinical Trial Data

•Efficacy data in clinical trials are rarely MCAR because the 
observed outcomes influence dropout (i.e. discontinuation due 
to lack of efficacy)

•Clinical trials attempt to collect information to explain patient 
dropout
•

 

This may minimize MNAR data

•In the scenario of a highly-controlled clinical trial, data may be 
mostly MAR

•MNAR data can never be ruled out
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Implications of Missingness

•All analyses rely on assumptions regarding missing data

•Clinical trial design features to minimize patient dropout 
should be strongly considered

•Analytical models can influence the missing data mechanism 
and should be considered when creating an analysis plan
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Analysis of Missing Data – LOCF (BOCF)

•Last observation carried forward is a single imputation 
method that assumes for patients with missing observations at 
endpoint, their responses at endpoint would have been the 
same as their last observed value

•Baseline observation carried forward (BOCF) is similar, 
assumes that responses at endpoint would have been the 
same as the baseline observed values for patients with no 
post-baseline observations.  For patients with at least one 
post-baseline observation, operates the same way as LOCF
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LOCF via ANOVA

•LOCF does not distinguish between observed and imputed 
data

•ANOVA, as a frequentist method, assumes a MCAR missing 
data mechanism

•Use of last observed data point yields a constant patient 
profile at all other unobserved later data points
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•MMRM, as a likelihood-based method, assumes a MAR missing 
data mechanism but holds under the assumption of MCAR as 
well

•Models fixed and random effects
•

 

In the clinical trial setting, treatment is an example of a fixed effect 
and patient is an example of a random effect

•MMRM includes the random effect of patient within the marginal 
covariance matrix (combination of within patient and between 
patient errors)

Mixed Model Repeated Measures (MMRM)3-5
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Mixed Model Repeated Measures (MMRM)6

•Controlling for random effects allows for better inference on 
fixed effects
•

 

Other types of mixed models handle random effects differently

•Model assumes patients who were improving at the time of 
dropout would continue to improve, and that, vice versa, patients 
who were worsening at the time of dropout would continue to 
worsen

•The trajectory of improvement or worsening after dropout is 
adjusted mathematically based on observed data from the 
patient and other patients
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What’s your primary? LOCF vs. MMRM1,4,7

•For clinical trial applications, let’s first consider the missing data 
mechanism:
•

 

MAR could be considered reasonable given that missingness can 
often be explained by the observed data and the choice of statistical 
model

•

 

MAR holds under MCAR conditions, the converse is not true
•

 

As previously noted, clinical trials inherently may minimize MNAR 
data by being highly-controlled
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What’s your primary? LOCF vs. MMRM
•LOCF continues to be widely used as the primary analysis of 
mean change

•Why?
•

 

Perceived as a conservative approach
•

 

Concern over the performance of MAR methods such as MMRM in 
a MNAR setting

•Is there statistical evidence to address these issues?
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Conservatism of LOCF
•LOCF underestimates within group changes whenever change 
increases over time

•LOCF overestimates within group change when change is 
greatest at intermediate time points

•While underestimating within group change is conservative in 
terms of improvement over time, it is anticonservative for 
worsening over time
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Conservatism of LOCF
•Consider the following examples:
•

 

Alzheimer’s disease –

 

treatment administered to prevent symptom 
worsening (mental deterioration)

•

 

Depression relapse trials –

 

treatment administered to prevent 
depression relapse

•

 

Vital signs

•LOCF would underestimate within group changes in each of 
these scenarios
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Conservatism of LOCF4,8-25

•There is a significant body of literature that demonstrates LOCF
 leads to:

•

 

Biased estimates of treatment effects
•

 

Biased conclusions of no treatment effect in hypothesis testing
•

 

Underestimates of standard errors
•

 

Inflated Type I error
•

 

Varying observed coverage probabilities for CIs



11/16/2007
File name/location

Company Confidential
Copyright © 2000 Eli Lilly and Company

19

Conservatism of LOCF4,6,13-16,26,27

•While LOCF may yield conservative estimates of within-group 
change, the primary goal in clinical trials is generally to compare 
between treatment groups

•Studies have demonstrated that many times LOCF does not act 
conservatively for between-group comparisons

•In a recent NDA:28

•

 

MMRM yielded a lower p-value than LOCF in 54.5% (110/202) of tests
•

 

LOCF yielded a lower p-value than MMRM in 34.2% (69/202) of tests
•

 

MMRM and LOCF yielded equal p-values in 11.4% (23/202) of tests
–

 

Due primarily to p<.001 outcomes
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Performance of MMRM with MNAR data
•Several simulation studies demonstrate that MAR methods 
provide superior Type I and Type II error control versus LOCF in

 a setting with MNAR data

•MMRM and LOCF yield identical results when data sets are 
complete

•Differences exist when data is eliminated via a MNAR 
mechanism
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Performance of MMRM with MNAR data13

•Study I:
•

 

MMRM compared with LOCF via ANOVA in scenarios where there 
was a true difference in mean change from baseline to endpoint 
between treatments

•

 

MMRM estimates of mean change closer to true values than LOCF 
estimates in every simulated scenario

•

 

LOCF underestimated standard errors, MMRM estimates were 
accurate

•

 

LOCF overestimated treatment differences when there was 
substantial placebo dropout

•

 

Expected CI coverage rate (percent of CIs that contain the true 
value) was 95%, MMRM yielded 94%, LOCF 87%
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Performance of MMRM with MNAR data14

•Study II:
•

 

MMRM compared with LOCF via ANOVA in scenarios where there 
was no true difference in mean change from baseline to endpoint 
between treatments

•

 

Expected Type I error rate of 5%, MMRM yield 5.9% and LOCF 
10.4%

•

 

Type I error rates across all scenarios ranged from 5.0% to 7.2%

 

for 
MMRM and from 4.4% to 36.0% for LOCF
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Performance of MMRM with MNAR data15

•Study III:
•

 

MMRM compared with LOCF via ANOVA in two scenarios where 
there was a true difference in mean change from baseline to 
endpoint between treatments and in two scenarios where there was

 no true difference
•

 

Autoregressive, Compound Symmetry, and Unstructured correlation 
structures were tested for MMRM in each scenario

•

 

Type I error rate from LOCF at least as great as from MMRM even 
when selecting the least appropriate covariance structure

•

 

MMRM with unstructured covariance matrix provided better Type I 
error control than LOCF in all scenarios (6.2% vs. 9.8%)
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Performance of MMRM with MNAR data15

•Study III:
•

 

With a large true difference between treatments and a higher 
dropout rate in the superior treatment arm:

–

 

MMRM yielded an estimate of treatment difference of 12.6 vs. 9.1

 

for 
LOCF (true value of 12)

–

 

Power to detect difference between treatments was 75% for MMRM 
vs. 59% for LOCF

•

 

With a small true difference between treatments and a higher 
dropout rate in the inferior treatment arm:

–

 

MMRM yielded an estimate of treatment difference of 2.9 vs. 5.2 for 
LOCF (true value 4)

–

 

Power to detect difference between treatments was 10% for MMRM 
vs. 17% for LOCF
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MNAR Methodology
•Classes exist that differ via the factorization of the likelihood 
functions for the joint distribution of the outcome variable and

 

the 
missingness indicator variable

•Commonly referred to as the measurement process (observed 
data) and the missingness process (unobserved data)

•MNAR analyses are only as good as the assumed model
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MNAR Methodology1,29-31

•Selection Models
•

 

Likelihood function product of the marginal density of the 
measurement process and the density of the missingness process 
conditional on the outcomes

•

 

Can be parametric on non-parametric
•

 

Consider as a multivariate analysis modeling the main outcome (i.e. 
mean change analysis) and dropout (categorical analysis)
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MNAR Methodology32,33

•Pattern-Mixture Models
•

 

Likelihood function product of the marginal density of the 
measurement process conditional on the drop-out pattern and the 
density of the missingness process

•

 

Model the outcome variable separately for different patterns often 
based on time of dropout

•

 

Combine patterns for inference
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MNAR Methodology2,34-38

•Shared-Parameter Models
•

 

Likelihood function product of the marginal density of the 
measurement process and the density of the missingness process, 
both conditional on a parameter that influences both the outcome

 and dropout
•

 

Conditional on the parameter, generally a random effect, the 
measurement and missingness processes are independent
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MNAR Methodology as the Primary?
•Rubin (1994): “…even inferences for the data parameters 
generally depend on the posited missingness mechanism, a fact 
that typically implies greatly increased sensitivity of inference.”39

•Laird (1994): “…estimating the unestimable can be 
accomplished only by making modeling assumptions…The 
consequences of model misspecification will be more severe in 
the non-random case.”40

•Molenberghs, Kenward, and Lesaffre (1997): “…conclusions are 
conditional on the appropriateness of the assumed model, which 
in a fundamental sense is not testable.”41
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Recommendations for Moving Forward

•Use MAR methods such as MMRM for primary analysis 
purposes

•Practice inclusive modeling –
 

add ancillary variables that may 
help explain missingness to make data MAR rather than 
MNAR

•Including such ancillary variables in a MAR analysis such as 
MMRM may improve estimates, Type I error control, and 
power42
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Recommendations for Moving Forward

•Implement MNAR methods as sensitivity analyses and to test 
for local influence

•Local influence identifies potentially influential data points and 
examines the effect of such points

•In particular, several newer approaches exist for selection 
models43-49
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